The process of discovering relevant patterns holding in a database was first indicated as a threat to database security by O'Leary in [1]. Since then, many different approaches for knowledge hiding have emerged over the years, mainly in the context of association rules and frequent item sets mining. Following many real-world data and application demands, in this paper, we shift the problem of knowledge hiding to contexts where both the data and the extracted knowledge have a sequential structure. We define the problem of hiding sequential patterns and show its NP-hardness. Thus, we devise heuristics and a polynomial sanitization algorithm. Starting from this framework, we specialize it to the more complex case of spatiotemporal patterns extracted from moving objects databases. Finally, we discuss a possible kind of attack to our model, which exploits the knowledge of the underlying road network, and enhance our model to protect from this kind of attack. An exhaustive experiential analysis on real-world data sets shows the effectiveness of our proposal.

Hiding Sequential and Spatiotemporal Patterns

Giannotti F;
2010

Abstract

The process of discovering relevant patterns holding in a database was first indicated as a threat to database security by O'Leary in [1]. Since then, many different approaches for knowledge hiding have emerged over the years, mainly in the context of association rules and frequent item sets mining. Following many real-world data and application demands, in this paper, we shift the problem of knowledge hiding to contexts where both the data and the extracted knowledge have a sequential structure. We define the problem of hiding sequential patterns and show its NP-hardness. Thus, we devise heuristics and a polynomial sanitization algorithm. Starting from this framework, we specialize it to the more complex case of spatiotemporal patterns extracted from moving objects databases. Finally, we discuss a possible kind of attack to our model, which exploits the knowledge of the underlying road network, and enhance our model to protect from this kind of attack. An exhaustive experiential analysis on real-world data sets shows the effectiveness of our proposal.
2010
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Sequential patterns
Spatiotemporal patterns
Knowledge hiding
Data publishing
File in questo prodotto:
File Dimensione Formato  
prod_185279-doc_33172.pdf

solo utenti autorizzati

Descrizione: Hiding sequential and spatiotemporal patterns
Tipologia: Versione Editoriale (PDF)
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/243529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 28
social impact