Tomato (Solanum lycopersicum L.) is the most intensively investigated Solanaceous species both in genetic and genomics studies. It is a diploid species with a haploid set of 12 chromosomes and a small genome (950Mb). Based on the detailed knowledge on tomato structural genomics, the sequencing of the euchromatic regions started in the year 2005 as a common effort of different countries. The manuscript focuses on markers used for tomato, on mapping efforts mainly based on exploitation of natural biodiversity, and it gives an updated report on the international sequencing activities. The principal tools developed to explore the function of tomato genes are also summarized, including mutagenesis, genetic transformation, and transcriptome analysis. The current progress in bioinformatic strategies available to manage the overwhelming amount of data generated from different tomato "omics" approaches is reported, and emphasis is given to the effort of producing a computational workbench for the analysis of the organization, as well as the functionality and evolution of the Solanaceae family.

Structural and functional genomics of tomato.

Grandillo Silvana;
2008

Abstract

Tomato (Solanum lycopersicum L.) is the most intensively investigated Solanaceous species both in genetic and genomics studies. It is a diploid species with a haploid set of 12 chromosomes and a small genome (950Mb). Based on the detailed knowledge on tomato structural genomics, the sequencing of the euchromatic regions started in the year 2005 as a common effort of different countries. The manuscript focuses on markers used for tomato, on mapping efforts mainly based on exploitation of natural biodiversity, and it gives an updated report on the international sequencing activities. The principal tools developed to explore the function of tomato genes are also summarized, including mutagenesis, genetic transformation, and transcriptome analysis. The current progress in bioinformatic strategies available to manage the overwhelming amount of data generated from different tomato "omics" approaches is reported, and emphasis is given to the effort of producing a computational workbench for the analysis of the organization, as well as the functionality and evolution of the Solanaceae family.
2008
Istituto di Bioscienze e Biorisorse
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/243641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact