Specific cell-cell and cell-substrate interactions direct the growth of ectomycorrhizal fungi to their host root targets. These elaborate mechanisms lead to the differentiation of distinct multihyphal structures, the mantle, and the Hartig net. In the ectomycorrhizal basidiomycete Pisolithus tinctorius, the use of two-dimensional gel electrophoresis, immunocytochemical microscopy, and RNA blot analysis has demonstrated the differential expression of cell wall proteins (CWPs), such as hydrophobins, adhesins, and mannoproteins, during symbiotic interaction. In other fungi, these CWPs have been suggested to play a role in hyphae aggregation, intracellular signaling cascades, and cytoskeletal changes. The recent cloning of the genes for several of these CWPs in P. tinctorius allows us to address their function in symbiosis. This review summarizes our knowledge of CWPs in P. tinctorius and considers parallels with other biotrophic fungi as a possible framework for future work.

Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: identification, function and expression in symbiosis.

BALESTRINI R;
1999

Abstract

Specific cell-cell and cell-substrate interactions direct the growth of ectomycorrhizal fungi to their host root targets. These elaborate mechanisms lead to the differentiation of distinct multihyphal structures, the mantle, and the Hartig net. In the ectomycorrhizal basidiomycete Pisolithus tinctorius, the use of two-dimensional gel electrophoresis, immunocytochemical microscopy, and RNA blot analysis has demonstrated the differential expression of cell wall proteins (CWPs), such as hydrophobins, adhesins, and mannoproteins, during symbiotic interaction. In other fungi, these CWPs have been suggested to play a role in hyphae aggregation, intracellular signaling cascades, and cytoskeletal changes. The recent cloning of the genes for several of these CWPs in P. tinctorius allows us to address their function in symbiosis. This review summarizes our knowledge of CWPs in P. tinctorius and considers parallels with other biotrophic fungi as a possible framework for future work.
1999
PROTEZIONE DELLE PIANTE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/243836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 49
social impact