In this paper, we introduce a new feature representation method for face recognition. The proposed method, referred as Kernel ICA, combines the strengths of the Kernel and Independent Component Analysis approaches. For performing Kernel ICA, we employ an algorithm developed by F. R. Bach and M. I. Jordan. This algorithm has proven successful for separating randomly mixed auditory signals, but it has never been applied on bidimensional signals such as images. We compare the performance of Kernel ICA with classical algorithms such as PCA and ICA within the context of appearance-based face recognition problem using the FERET database. Experimental results show that both Kernel ICA and ICA representations are superior to representations based on PCA for recognizing faces across days and changes in expressions.

Face Recognition by Kernel Independent Component Analysis

M Leo;T DOrazio;A Distante
2005

Abstract

In this paper, we introduce a new feature representation method for face recognition. The proposed method, referred as Kernel ICA, combines the strengths of the Kernel and Independent Component Analysis approaches. For performing Kernel ICA, we employ an algorithm developed by F. R. Bach and M. I. Jordan. This algorithm has proven successful for separating randomly mixed auditory signals, but it has never been applied on bidimensional signals such as images. We compare the performance of Kernel ICA with classical algorithms such as PCA and ICA within the context of appearance-based face recognition problem using the FERET database. Experimental results show that both Kernel ICA and ICA representations are superior to representations based on PCA for recognizing faces across days and changes in expressions.
2005
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/24438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact