We report on the observation of orbital excitations in YVO3 by means of resonant inelastic x-ray scattering (RIXS) at energies across the vanadium L3 and oxygen K absorption edges. At the V L3 edge, we are able to resolve the full spectrum of orbital excitations up to 5 eV. In order to unravel the effect of superexchange interactions and the crystal field on the orbital excitations, we analyzed the energy and temperature dependence of the intra-t2g excitations at 0.1-0.2 eV in detail. While these results suggest a dominant influence of the crystal field, peak shifts of about 13-20 meV observed as a function of the transferred momentum q?a reflect a finite dispersion of the orbital excitations. This is puzzling since theoretical models based on superexchange interactions predict a dispersion only for q?c. Furthermore, we demonstrate that RIXS at the O K edge is very sensitive to intersite excitations. At the O K edge, we observe excitations across the Mott-Hubbard gap and an additional feature at 0.4 eV, which we attribute to two-orbiton scattering, i.e., an exchange of orbitals between adjacent sites. Altogether, our results indicate that both superexchange interactions and the crystal field are important for a quantitative understanding of the orbital excitations in YVO3.

Orbital superexchange and crystal field simultaneously at play in YVO3: Resonant inelastic x-ray scattering at the V L edge and the O K edge

G Ghiringhelli;
2013

Abstract

We report on the observation of orbital excitations in YVO3 by means of resonant inelastic x-ray scattering (RIXS) at energies across the vanadium L3 and oxygen K absorption edges. At the V L3 edge, we are able to resolve the full spectrum of orbital excitations up to 5 eV. In order to unravel the effect of superexchange interactions and the crystal field on the orbital excitations, we analyzed the energy and temperature dependence of the intra-t2g excitations at 0.1-0.2 eV in detail. While these results suggest a dominant influence of the crystal field, peak shifts of about 13-20 meV observed as a function of the transferred momentum q?a reflect a finite dispersion of the orbital excitations. This is puzzling since theoretical models based on superexchange interactions predict a dispersion only for q?c. Furthermore, we demonstrate that RIXS at the O K edge is very sensitive to intersite excitations. At the O K edge, we observe excitations across the Mott-Hubbard gap and an additional feature at 0.4 eV, which we attribute to two-orbiton scattering, i.e., an exchange of orbitals between adjacent sites. Altogether, our results indicate that both superexchange interactions and the crystal field are important for a quantitative understanding of the orbital excitations in YVO3.
2013
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact