We have purified Herpes simplex type 1 (HSV1) uracil-DNA glycosylase from the nuclei of HSV1-infected HeLa cells harvested 8 h post-infection, at which time the induction of the enzyme is a maximum. The enzyme has been shown to be distinct from the host enzyme, isolated from HeLa cells, by its lack of sensitivity to a monoclonal antibody to human uracil-DNA glycosylase. Furthermore, several uracil analogues were synthesized and screened for their capacity to discriminate between the viral and human uracil-DNA glycosylases. Both enzymes were inhibited by 6-(p-alkylanilino)uracils, but the viral enzyme was significantly more sensitive than the HeLa enzyme to most analogues. Substituents providing the best inhibitors of HSV1 uracil-DNA glycosylase were found to be in the order: p-n-butyl < p-n-pentyl = p-n-hexyl < p-n-heptyl < p-n-octyl. The most potent HSV1 enzyme inhibitor, 6-(p-n-octylanilino)uracil (OctAU), with an IC50 of 8 muM, was highly selective for the viral enzyme. Short-term [H-3]thymidine incorporation into the DNA of HeLa cells in culture was partially inhibited by OctAU, whereas it was unchanged when 6-(p-n-hexylanilino)uracil was present at concentrations that completely inhibited HSV1 uracil-DNA glycosylase activity. These compounds represent the first class of inhibitors that inhibit HSV1 uracil-DNA glycosylase at concentrations in the micromolar range. The results suggest their possible use to evaluate the functional role of HSV1 uracil-DNA glycosylase in viral infections and re-activation in nerve cells.

HERPES-SIMPLEX VIRUS TYPE-1 URACIL-DNA GLYCOSYLASE - ISOLATION AND SELECTIVE-INHIBITION BY NOVEL URACIL DERIVATIVES

FOCHER F;
1993

Abstract

We have purified Herpes simplex type 1 (HSV1) uracil-DNA glycosylase from the nuclei of HSV1-infected HeLa cells harvested 8 h post-infection, at which time the induction of the enzyme is a maximum. The enzyme has been shown to be distinct from the host enzyme, isolated from HeLa cells, by its lack of sensitivity to a monoclonal antibody to human uracil-DNA glycosylase. Furthermore, several uracil analogues were synthesized and screened for their capacity to discriminate between the viral and human uracil-DNA glycosylases. Both enzymes were inhibited by 6-(p-alkylanilino)uracils, but the viral enzyme was significantly more sensitive than the HeLa enzyme to most analogues. Substituents providing the best inhibitors of HSV1 uracil-DNA glycosylase were found to be in the order: p-n-butyl < p-n-pentyl = p-n-hexyl < p-n-heptyl < p-n-octyl. The most potent HSV1 enzyme inhibitor, 6-(p-n-octylanilino)uracil (OctAU), with an IC50 of 8 muM, was highly selective for the viral enzyme. Short-term [H-3]thymidine incorporation into the DNA of HeLa cells in culture was partially inhibited by OctAU, whereas it was unchanged when 6-(p-n-hexylanilino)uracil was present at concentrations that completely inhibited HSV1 uracil-DNA glycosylase activity. These compounds represent the first class of inhibitors that inhibit HSV1 uracil-DNA glycosylase at concentrations in the micromolar range. The results suggest their possible use to evaluate the functional role of HSV1 uracil-DNA glycosylase in viral infections and re-activation in nerve cells.
1993
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact