Lab-on-a-Chip devices exploit micro/nanoengineering techniques to develop miniaturized systems for handling and manipulating small volumes of fluids. Here, we demonstrate a microfluidic device for culturing cells in closed microchambers that is designed to be compatible with standard biological procedures. This approach facilitates the thermal and gaseous equilibration of all the components, preventing the nucleation of air bubbles. Serial asymmetrical loadings were performed to realize co-cultures with initial topographical organization. The migration of two different cell types was monitored for 72 h by high-resolution fluorescence imaging. © 2014 Elsevier B.V. All rights reserved.

Tubeless biochip for tailoring cell co-cultures in closed microchambers

Beltram F;Cecchini M
2014

Abstract

Lab-on-a-Chip devices exploit micro/nanoengineering techniques to develop miniaturized systems for handling and manipulating small volumes of fluids. Here, we demonstrate a microfluidic device for culturing cells in closed microchambers that is designed to be compatible with standard biological procedures. This approach facilitates the thermal and gaseous equilibration of all the components, preventing the nucleation of air bubbles. Serial asymmetrical loadings were performed to realize co-cultures with initial topographical organization. The migration of two different cell types was monitored for 72 h by high-resolution fluorescence imaging. © 2014 Elsevier B.V. All rights reserved.
2014
Istituto Nanoscienze - NANO
Cell filter
Co-cultures
Microchamber
Microfluidics
Migration
Tubeless
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact