We study heat transport in a one-dimensional chain of a finite number N of identical cells, coupled at its boundaries to stochastic particle reservoirs. At the center of each cell, tracer particles collide with fixed scatterers, exchanging momentum. In a recent paper (Collet and Eckmann in Commun. Math. Phys. 287:1015, 2009), a spatially continuous version of this model was derived in a scaling regime where the scattering probability of the tracers is ??1/N, corresponding to the Grad limit. A Boltzmann-like equation describing the transport of heat was obtained. In this paper, we show numerically that the Boltzmann description obtained in Collet and Eckmann (Commun. Math. Phys. 287:1015, 2009) is indeed a bona fide limit of the particle model. Furthermore, we study the heat transport of the model when the scattering probability is 1, corresponding to deterministic dynamics. Thought as a lattice model in which particles jump between different scatterers the motion is persistent, with a persistence probability determined by the mass ratio among particles and scatterers, and a waiting time probability distribution with algebraic tails. We find that the heat and particle currents scale slower than 1/N, implying that this model exhibits anomalous heat and particle transport.

Superdiffusive Heat Transport in a Class of Deterministic One-dimensional Many-Particle Lorentz Gases

2009

Abstract

We study heat transport in a one-dimensional chain of a finite number N of identical cells, coupled at its boundaries to stochastic particle reservoirs. At the center of each cell, tracer particles collide with fixed scatterers, exchanging momentum. In a recent paper (Collet and Eckmann in Commun. Math. Phys. 287:1015, 2009), a spatially continuous version of this model was derived in a scaling regime where the scattering probability of the tracers is ??1/N, corresponding to the Grad limit. A Boltzmann-like equation describing the transport of heat was obtained. In this paper, we show numerically that the Boltzmann description obtained in Collet and Eckmann (Commun. Math. Phys. 287:1015, 2009) is indeed a bona fide limit of the particle model. Furthermore, we study the heat transport of the model when the scattering probability is 1, corresponding to deterministic dynamics. Thought as a lattice model in which particles jump between different scatterers the motion is persistent, with a persistence probability determined by the mass ratio among particles and scatterers, and a waiting time probability distribution with algebraic tails. We find that the heat and particle currents scale slower than 1/N, implying that this model exhibits anomalous heat and particle transport.
2009
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact