Understanding the organization of reaction fluxes in cellular metabolism from the stoichiometry and the topology of the underlying biochemical network is a central issue in systems biology. In this task, it is important to devise reasonable approximation schemes that rely on the stoichiometric data only, because full-scale kinetic approaches are computationally affordable only for small networks (e.g., red blood cells, ?50 reactions). Methods commonly used are based on finding the stationary flux configurations that satisfy mass-balance conditions for metabolites, often coupling them to local optimization rules (e.g., maximization of biomass production) to reduce the size of the solution space to a single point. Such methods have been widely applied and have proven able to reproduce experimental findings for relatively simple organisms in specific conditions. Here, we define and study a constraint-based model of cellular metabolism where neither mass balance nor flux stationarity are postulated and where the relevant flux configurations optimize the global growth of the system. In the case of Escherichia coli, steady flux states are recovered as solutions, although mass-balance conditions are violated for some metabolites, implying a nonzero net production of the latter. Such solutions furthermore turn out to provide the correct statistics of fluxes for the bacterium E. coli in different environments and compare well with the available experimental evidence on individual fluxes. Conserved metabolic pools play a key role in determining growth rate and flux variability. Finally, we are able to connect phenomenological gene essentiality with "frozen" fluxes (i.e., fluxes with smaller allowed variability) in E. coli metabolism.

Identifying essential genes in Escherichia coli from a metabolic optimization principle

Andrea De Martino;
2009

Abstract

Understanding the organization of reaction fluxes in cellular metabolism from the stoichiometry and the topology of the underlying biochemical network is a central issue in systems biology. In this task, it is important to devise reasonable approximation schemes that rely on the stoichiometric data only, because full-scale kinetic approaches are computationally affordable only for small networks (e.g., red blood cells, ?50 reactions). Methods commonly used are based on finding the stationary flux configurations that satisfy mass-balance conditions for metabolites, often coupling them to local optimization rules (e.g., maximization of biomass production) to reduce the size of the solution space to a single point. Such methods have been widely applied and have proven able to reproduce experimental findings for relatively simple organisms in specific conditions. Here, we define and study a constraint-based model of cellular metabolism where neither mass balance nor flux stationarity are postulated and where the relevant flux configurations optimize the global growth of the system. In the case of Escherichia coli, steady flux states are recovered as solutions, although mass-balance conditions are violated for some metabolites, implying a nonzero net production of the latter. Such solutions furthermore turn out to provide the correct statistics of fluxes for the bacterium E. coli in different environments and compare well with the available experimental evidence on individual fluxes. Conserved metabolic pools play a key role in determining growth rate and flux variability. Finally, we are able to connect phenomenological gene essentiality with "frozen" fluxes (i.e., fluxes with smaller allowed variability) in E. coli metabolism.
2009
Istituto dei Sistemi Complessi - ISC
fluxomics
growth
stoichiometry
conserved moieties
gene essentiality
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 34
social impact