We prove global existence and uniqueness of smooth solutions to a nonlinear system of parabolic-elliptic equations, which describes the chemical aggression of a permeable material, like calcium carbonate rocks, in presence of acid atmosphere. This model applies when convective flows are not negligible, due to the high permeability of the material. The global (in time) result is proven by using a weak continuation principle for the local solutions.

Global existence for a 1D parabolic-elliptic model for chemical aggression in permeable materials

Roberto Natalini;Isabella Torcicollo
2015

Abstract

We prove global existence and uniqueness of smooth solutions to a nonlinear system of parabolic-elliptic equations, which describes the chemical aggression of a permeable material, like calcium carbonate rocks, in presence of acid atmosphere. This model applies when convective flows are not negligible, due to the high permeability of the material. The global (in time) result is proven by using a weak continuation principle for the local solutions.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto Applicazioni del Calcolo ''Mauro Picone''
reaction-diffusion
existence an
porous media
convective and diffusive flows
chemical reactions
carbonate rocks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact