Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in uinoa plants. An irrigation experiment was carried out in 2009 and 2010 in the Volturno river plain. Three treatments irrigated with fresh water (Q100, Q50 and Q25) and three irrigated with saline water (Q100S, Q50S and Q25S) were tested. For saline irrigation, water with an electrical conductivity of 22 dS m 1 was used. Actual evapotranspiration (ETa), water productivity (WP), biomass allocation, relative growth rate (RGR), net assimilation rate (NAR), specific leaf area, leaf area ratio and ions accumulation of quinoa plants were evaluated. WP and plant growth were not influenced by saline irrigation, as quinoa plants incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected by severe drought with RGR and NAR reduction, and then, they adapted to it. Quinoa could be considered a drought tolerant crop that adapt photosynthetic rate to compensate for a reduced growth.

Growth and Ionic Content of Quinoa Under Saline Irrigation

Riccardi M;Pulvento C;Lavini A;d'Andria R;
2014

Abstract

Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in uinoa plants. An irrigation experiment was carried out in 2009 and 2010 in the Volturno river plain. Three treatments irrigated with fresh water (Q100, Q50 and Q25) and three irrigated with saline water (Q100S, Q50S and Q25S) were tested. For saline irrigation, water with an electrical conductivity of 22 dS m 1 was used. Actual evapotranspiration (ETa), water productivity (WP), biomass allocation, relative growth rate (RGR), net assimilation rate (NAR), specific leaf area, leaf area ratio and ions accumulation of quinoa plants were evaluated. WP and plant growth were not influenced by saline irrigation, as quinoa plants incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected by severe drought with RGR and NAR reduction, and then, they adapted to it. Quinoa could be considered a drought tolerant crop that adapt photosynthetic rate to compensate for a reduced growth.
2014
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Drought stress
Growth analysis
Ionic compartmentation
Osmotic adjustment
Salinity
Water productivity
File in questo prodotto:
File Dimensione Formato  
prod_281092-doc_80715.pdf

solo utenti autorizzati

Descrizione: Growth and Ionic Content of Quinoa Under Saline Irrigation
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 578.23 kB
Formato Adobe PDF
578.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/244752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? ND
social impact