This paper provides a characterization of the induced electric field distributions in the brain of a realistic human model due to 16 different coil configurations. We used the scalar potential finite element method to calculate the induced electric field distributions differentiating the brain structures, e.g. cortex, white matter, cerebellum, thalamus, hypothalamus, hippocampus, pons and midbrain. We found that, despite the presence of a depth-focality tradeoff, some configurations are able to reach subcortical white matter tracts at effective electric field level.
Modelling of Deep Transcranial Magnetic Stimulation: Different Coil Configurations
Parazzini M;Liorni I;Fiocchi S;Ravazzani P
2014
Abstract
This paper provides a characterization of the induced electric field distributions in the brain of a realistic human model due to 16 different coil configurations. We used the scalar potential finite element method to calculate the induced electric field distributions differentiating the brain structures, e.g. cortex, white matter, cerebellum, thalamus, hypothalamus, hippocampus, pons and midbrain. We found that, despite the presence of a depth-focality tradeoff, some configurations are able to reach subcortical white matter tracts at effective electric field level.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.