The historical site of the Monte Mario lower Pleistocene succession (Rome, Italy) is an important marker of the Pliocene/Pleistocene boundary. Recently, the Monte Mario site was excavated and restudied. A spectacular angular unconformity characterizes the contact between the Monte Vaticano and the Monte Mario formations, which marks the Pliocene/Pleistocene boundary. Biostratigraphical analyses carried out on ostracod, foraminifer, and calcareous nannofossil assemblages indicate an Early Pliocene age (topmost Zanclean, 3.81-3.70 Ma) for the underlying Monte Vaticano Formation, whereas the Monte Mario Formation has been dated as early Pleistocene (Santernian, 1.66-1.59 Ma). Palaeomagnetic analyses point to C2Ar and C1r2r polarity chrons for the Monte Vaticano and the Monte Mario formations, respectively. The Monte Mario Formation consists of two obliquity-forced depositional sequences (MM1 and MM2) characterized by transgressive systems tracts of littoral marine environments at depths, respectively, of 40-80 m and 15-20 m. The data obtained from foraminifer and ostracod assemblages allow us to reconstruct early Pleistocene relative sea-level changes near Rome. At the Plio/Pleistocene transition, a relative sea-level drop of at least 260 m occurred, as a result of both tectonic uplift of the central Tyrrhenian margin and glacio-eustatic changes linked to early Pleistocene glaciation (Marine Isotope Stage 58). © 2009 University of Washington.
Tectonics, sea-level changes and palaeoenvironments in the early Pleistocene of Rome (Italy)
Mazzini Ilaria;
2009
Abstract
The historical site of the Monte Mario lower Pleistocene succession (Rome, Italy) is an important marker of the Pliocene/Pleistocene boundary. Recently, the Monte Mario site was excavated and restudied. A spectacular angular unconformity characterizes the contact between the Monte Vaticano and the Monte Mario formations, which marks the Pliocene/Pleistocene boundary. Biostratigraphical analyses carried out on ostracod, foraminifer, and calcareous nannofossil assemblages indicate an Early Pliocene age (topmost Zanclean, 3.81-3.70 Ma) for the underlying Monte Vaticano Formation, whereas the Monte Mario Formation has been dated as early Pleistocene (Santernian, 1.66-1.59 Ma). Palaeomagnetic analyses point to C2Ar and C1r2r polarity chrons for the Monte Vaticano and the Monte Mario formations, respectively. The Monte Mario Formation consists of two obliquity-forced depositional sequences (MM1 and MM2) characterized by transgressive systems tracts of littoral marine environments at depths, respectively, of 40-80 m and 15-20 m. The data obtained from foraminifer and ostracod assemblages allow us to reconstruct early Pleistocene relative sea-level changes near Rome. At the Plio/Pleistocene transition, a relative sea-level drop of at least 260 m occurred, as a result of both tectonic uplift of the central Tyrrhenian margin and glacio-eustatic changes linked to early Pleistocene glaciation (Marine Isotope Stage 58). © 2009 University of Washington.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.