Traditional video compression methods obtain a compact representation for image frames by computing coarse motion fields defined on patches of pixels called blocks, in order to compensate for the motion in the scene across frames. This piecewise constant approximation makes the motion field efficiently encodable, but it introduces block artifacts in the warped image frame. In this paper, we address the problem of estimating dense motion fields that, while accurately predicting one frame from a given reference frame by warping it with the field, are also compressible. We introduce a representation for motion fields based on wavelet bases, and approximate the compressibility of their coefficients with a piecewise smooth surrogate function that yields an objective function similar to classical optical flow formulations. We then show how to quantize and encode such coefficients with adaptive precision. We demonstrate the effectiveness of our approach by com- paring its performance with a state-of-the-art wavelet video encoder. Experimental results on a number of standard flow and video datasets reveal that our method significantly out- performs both block-based and optical-flow-based motion compensation algorithms.

Compressible motion fields

2013

Abstract

Traditional video compression methods obtain a compact representation for image frames by computing coarse motion fields defined on patches of pixels called blocks, in order to compensate for the motion in the scene across frames. This piecewise constant approximation makes the motion field efficiently encodable, but it introduces block artifacts in the warped image frame. In this paper, we address the problem of estimating dense motion fields that, while accurately predicting one frame from a given reference frame by warping it with the field, are also compressible. We introduce a representation for motion fields based on wavelet bases, and approximate the compressibility of their coefficients with a piecewise smooth surrogate function that yields an objective function similar to classical optical flow formulations. We then show how to quantize and encode such coefficients with adaptive precision. We demonstrate the effectiveness of our approach by com- paring its performance with a state-of-the-art wavelet video encoder. Experimental results on a number of standard flow and video datasets reveal that our method significantly out- performs both block-based and optical-flow-based motion compensation algorithms.
2013
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-0-7695-4989-7
Video compression
Wavelets
Discrete optimization
Motion fields
H.5.1 Multimedia Information Systems
File in questo prodotto:
File Dimensione Formato  
prod_277764-doc_78335.pdf

accesso aperto

Descrizione: Compressible Motion Fields
Tipologia: Versione Editoriale (PDF)
Dimensione 968.57 kB
Formato Adobe PDF
968.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/245486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact