We focus on a multidimensional field with uncorrelated spectrum and study the quality of the reconstructed signal when the field samples are irregularly spaced and affected by independent and identically distributed noise. More specifically, we apply linear reconstruction techniques and take the mean-square error (MSE) of the field estimate as a metric to evaluate the signal reconstruction quality. We find that the MSE analysis could be carried out by using the closed-form expression of the eigenvalue distribution of the matrix representing the sampling system. Unfortunately, such distribution is still unknown. Thus, we first derive a closed-form expression of the distribution moments, and we find that the eigenvalue distribution tends to the Marcnko-Pastur distribution as the field dimension goes to infinity. Finally, by using our approach, we derive a tight approximation to the MSE of the reconstructed field.

Reconstruction of Multidimensional Signals from Irregular Noisy Samples

2008

Abstract

We focus on a multidimensional field with uncorrelated spectrum and study the quality of the reconstructed signal when the field samples are irregularly spaced and affected by independent and identically distributed noise. More specifically, we apply linear reconstruction techniques and take the mean-square error (MSE) of the field estimate as a metric to evaluate the signal reconstruction quality. We find that the MSE analysis could be carried out by using the closed-form expression of the eigenvalue distribution of the matrix representing the sampling system. Unfortunately, such distribution is still unknown. Thus, we first derive a closed-form expression of the distribution moments, and we find that the eigenvalue distribution tends to the Marcnko-Pastur distribution as the field dimension goes to infinity. Finally, by using our approach, we derive a tight approximation to the MSE of the reconstructed field.
2008
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/2455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact