We propose an approach to preserve privacy in an analytical process- ing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by in- dividual vehicles and shipped to a central server. Movement data are sensitive because they may describe typical movement behaviors and therefore be used for re-identification of individuals in a database. We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential pri- vacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the ef- fectiveness of our approach also in terms of data utility preserved by the data transformation.
Privacy-aware distributed mobility data analytics
Pratesi F;Rinzivillo S;
2013
Abstract
We propose an approach to preserve privacy in an analytical process- ing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by in- dividual vehicles and shipped to a central server. Movement data are sensitive because they may describe typical movement behaviors and therefore be used for re-identification of individuals in a database. We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential pri- vacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the ef- fectiveness of our approach also in terms of data utility preserved by the data transformation.File | Dimensione | Formato | |
---|---|---|---|
prod_277788-doc_78434.pdf
solo utenti autorizzati
Descrizione: Privacy-aware distributed mobility data analytics
Tipologia:
Versione Editoriale (PDF)
Dimensione
11.25 MB
Formato
Adobe PDF
|
11.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.