Graphite nanoplatelets (GNPs) react with elemental sulfur to provide a mechanically stable, spongy material characterized by good electrical conductivity and high surface development; such unique property combination makes these novel nanostructured materials very useful for applications in different technological fields. The carbon-sulfur reaction can be accurately investigated by thermal analysis (differential scanning calorimetry and thermogravimetric analysis) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy. The thermal treatment required for the formation of electrically conductive monosulfur connections among the GNP unities has been investigated.
Graphite nanoplatelet chemical cross-linking by elemental sulfur
Gianfranco Carotenuto;Sergio De Nicola;
2013
Abstract
Graphite nanoplatelets (GNPs) react with elemental sulfur to provide a mechanically stable, spongy material characterized by good electrical conductivity and high surface development; such unique property combination makes these novel nanostructured materials very useful for applications in different technological fields. The carbon-sulfur reaction can be accurately investigated by thermal analysis (differential scanning calorimetry and thermogravimetric analysis) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy. The thermal treatment required for the formation of electrically conductive monosulfur connections among the GNP unities has been investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


