The manuscript deals with the synthesis and properties of four new all-donor alternating poly(arylene-ethynylene)s DBSA, DBSTA, DTSA, and DTSTA. The polymers have been obtained by a Sonogashira cross-coupling of 9,10-diethynyl-anthracene with the dibromo-derivatives of 9,9-dioctyl-dibenzosilole (DBSA), 2,7-dithienyl-9,9-dioctyl-dibenzosilole (DBSTA), 4,4-dioctyl-dithienosilole (DTSA), or 2,6-dithienyl-9,9-dioctyl-dithienosilole (DTSTA). The polymers exhibited absorption profiles and frontier orbital energies strongly dependent on their primary structure. Density functional theory calculations confirmed experimental observations and provided an insight into the electronic structure of the macromolecules. In particular, the effects exerted by the thiophene units in DBSTA and DTSTA on the optical properties of the corresponding polymers could be rationalized with respect to DBSA and DTSA. Preliminary photovoltaic measurements have established that the performance of DTSA is among the highest reported for an all-donor polymer. Moreover, UV irradiation of DTSA films under air evidenced a remarkable photostability of this material, providing further evidence that ethynylene-containing electron-rich systems are promising donors for organic solar cells applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4860-4872

All-Donor Poly(arylene-ethynylene)s Containing Anthracene and Silole-Based Units: Synthesis, Electronic, and Photovoltaic Properties

Suranna Gian Paolo;Rizzo Aurora;Gigli Giuseppe;
2013

Abstract

The manuscript deals with the synthesis and properties of four new all-donor alternating poly(arylene-ethynylene)s DBSA, DBSTA, DTSA, and DTSTA. The polymers have been obtained by a Sonogashira cross-coupling of 9,10-diethynyl-anthracene with the dibromo-derivatives of 9,9-dioctyl-dibenzosilole (DBSA), 2,7-dithienyl-9,9-dioctyl-dibenzosilole (DBSTA), 4,4-dioctyl-dithienosilole (DTSA), or 2,6-dithienyl-9,9-dioctyl-dithienosilole (DTSTA). The polymers exhibited absorption profiles and frontier orbital energies strongly dependent on their primary structure. Density functional theory calculations confirmed experimental observations and provided an insight into the electronic structure of the macromolecules. In particular, the effects exerted by the thiophene units in DBSTA and DTSTA on the optical properties of the corresponding polymers could be rationalized with respect to DBSA and DTSA. Preliminary photovoltaic measurements have established that the performance of DTSA is among the highest reported for an all-donor polymer. Moreover, UV irradiation of DTSA films under air evidenced a remarkable photostability of this material, providing further evidence that ethynylene-containing electron-rich systems are promising donors for organic solar cells applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4860-4872
2013
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Nanotecnologia - NANOTEC
Istituto Nanoscienze - NANO
anthracene
bulk hetero-junction solar cells
conjugated polymers
dibenzosilole
dithienosilole
light harvesting donors
photophysics
polyaromatics
poly(arylene-ethynylene)s
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/245871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact