A scheme to produce time-bin entangled pairs of electrons and holes is proposed. It is based on a high-frequency time-resolved single-electron source from a quantum dot coupled to one-dimensional chiral channels. Operating the device in the weak tunneling regime, we show that at the lowest order in the tunneling rate, an electron-hole pair is emitted in a coherent superposition state of different time bins determined by the driving pulse sequence. © 2011 American Physical Society.

Time-bin entanglement of quasiparticles in semiconductor devices

Giovannetti V;
2011

Abstract

A scheme to produce time-bin entangled pairs of electrons and holes is proposed. It is based on a high-frequency time-resolved single-electron source from a quantum dot coupled to one-dimensional chiral channels. Operating the device in the weak tunneling regime, we show that at the lowest order in the tunneling rate, an electron-hole pair is emitted in a coherent superposition state of different time bins determined by the driving pulse sequence. © 2011 American Physical Society.
2011
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/245909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact