The authors report on a theoretical investigation of guided polariton states arising from the strong coupling between quantum-well excitons and a Bloch surface wave confined at the interface between a uniform dielectric medium and a Bragg mirror. It is shown that the exciton-photon coupling is almost doubled as compared to a similar structure made in a conventional planar microcavity. It is also shown that, by simple engineering of the sample surface with silicon oxide deposition, one can efficiently produce one-dimensional polaritons propagating within the structure with extremely low losses. The latter result evidences the usefulness of Bloch surface waves as a key component for the realization of "polaritonic integrated circuits." © 2011 American Institute of Physics.
Guided Bloch surface wave polaritons
Sanvitto D;
2011
Abstract
The authors report on a theoretical investigation of guided polariton states arising from the strong coupling between quantum-well excitons and a Bloch surface wave confined at the interface between a uniform dielectric medium and a Bragg mirror. It is shown that the exciton-photon coupling is almost doubled as compared to a similar structure made in a conventional planar microcavity. It is also shown that, by simple engineering of the sample surface with silicon oxide deposition, one can efficiently produce one-dimensional polaritons propagating within the structure with extremely low losses. The latter result evidences the usefulness of Bloch surface waves as a key component for the realization of "polaritonic integrated circuits." © 2011 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


