The monolayer protecting small gold nanoparticles (monolayer-protected clusters, MPCs) is generally represented as the 3D equivalent of 2D self-assembled monolayers (SAMs) on extended gold surfaces. However, despite the growing relevance of MPCs in important applied areas, such as catalysis and nanomedicine, our knowledge of the structure of 3D SAMs in solution is still extremely limited. We prepared a large series of monodisperse Au25(SCnH2nþ1)18 clusters (n = 2, 4, 6, 8, 10, 12, 14, 16, 18) and studied how electrons tunnel through these monolayers. Electron transfer results, nicely supported by 1H NMR spectroscopy, IR absorption spectroscopy, and molecular dynamics results, show that there is a critical ligand length marking the transition between short ligands, which form a quite fluid monolayer structure, and longer alkyl chains, which self-organize into bundles. At variance with the truly protecting 2D SAMs, efficient electronic communication of the Au25 core with the outer environment is thus possible even for long alkyl chains. These conclusions provide a different picture of how an ultrasmall gold core talks with the environment through/with its protecting but not-so-shielding monolayer

Electron transfer through 3D monolayers on Au25 clusters

Venzo A;
2014

Abstract

The monolayer protecting small gold nanoparticles (monolayer-protected clusters, MPCs) is generally represented as the 3D equivalent of 2D self-assembled monolayers (SAMs) on extended gold surfaces. However, despite the growing relevance of MPCs in important applied areas, such as catalysis and nanomedicine, our knowledge of the structure of 3D SAMs in solution is still extremely limited. We prepared a large series of monodisperse Au25(SCnH2nþ1)18 clusters (n = 2, 4, 6, 8, 10, 12, 14, 16, 18) and studied how electrons tunnel through these monolayers. Electron transfer results, nicely supported by 1H NMR spectroscopy, IR absorption spectroscopy, and molecular dynamics results, show that there is a critical ligand length marking the transition between short ligands, which form a quite fluid monolayer structure, and longer alkyl chains, which self-organize into bundles. At variance with the truly protecting 2D SAMs, efficient electronic communication of the Au25 core with the outer environment is thus possible even for long alkyl chains. These conclusions provide a different picture of how an ultrasmall gold core talks with the environment through/with its protecting but not-so-shielding monolayer
2014
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
electron transfer
gold nanoclusters
molecular electrochemistry
self-assembled monolayers
File in questo prodotto:
File Dimensione Formato  
prod_283570-doc_81010.pdf

solo utenti autorizzati

Descrizione: Electron transfer through 3D monolayers on Au25 clusters
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/246071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 90
social impact