A novel idea on how to make RANSAC repeatable is presented, which will find the optimal set in nearly every run for certain types of applications. The proposed algorithm can be used for such transformations that can be constructed by more than the minimal points required. We give examples on matching of aerial images using the Direct Linear Transformation, which requires at least four points. Moreover, we give examples on how the algorithm can be used for finding a plane in 3D using three points or more. Due to its random nature, standard RANSAC is not always able to find the optimal set even for moderately contaminated sets and it usually performs badly when the number of inliers is less than 50%. However, our algorithm is capable of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. The proposed algorithm is based on several known methods, which we modify in a unique way and together they produce a result that is quite different from what each method can produce on its own.

Optimal RANSAC - Towards a repeatable algorithm for finding the optimal set

Hast A;Marchetti A
2013

Abstract

A novel idea on how to make RANSAC repeatable is presented, which will find the optimal set in nearly every run for certain types of applications. The proposed algorithm can be used for such transformations that can be constructed by more than the minimal points required. We give examples on matching of aerial images using the Direct Linear Transformation, which requires at least four points. Moreover, we give examples on how the algorithm can be used for finding a plane in 3D using three points or more. Due to its random nature, standard RANSAC is not always able to find the optimal set even for moderately contaminated sets and it usually performs badly when the number of inliers is less than 50%. However, our algorithm is capable of finding the optimal set for heavily contaminated sets, even for an inlier ratio under 5%. The proposed algorithm is based on several known methods, which we modify in a unique way and together they produce a result that is quite different from what each method can produce on its own.
2013
Istituto di informatica e telematica - IIT
3D planes
Feature matching
Image stitching
Local optimisation
Optimal set
RANSAC
Repeatable
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/246306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? ND
social impact