The Ge 3p core excitation spectrum of the n-butylgermane molecule only reveals two peaks, whereas the rest of the fine structure is obscured due to the large lifetime broadenings of core-excited states. A two-dimensional presentation of resonant photoemission spectra allows us to observe some other resonances. The interpretation of experimental results is supported by ab initio calculations conducted at the four-component relativistic level of theory with full account made for spin-orbit interactions already in the zeroth-order Hamiltonian.

Use of two-dimensional photoelectron spectroscopy in the decomposition of an inner-shell excitation spectrum broadened by super-Coster-Kronig decay

M Coreno;M de Simone;C Grazioli;
2013

Abstract

The Ge 3p core excitation spectrum of the n-butylgermane molecule only reveals two peaks, whereas the rest of the fine structure is obscured due to the large lifetime broadenings of core-excited states. A two-dimensional presentation of resonant photoemission spectra allows us to observe some other resonances. The interpretation of experimental results is supported by ab initio calculations conducted at the four-component relativistic level of theory with full account made for spin-orbit interactions already in the zeroth-order Hamiltonian.
2013
Istituto di Nanotecnologia - NANOTEC
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/246405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact