The apparatus exploited in this work is composed of an optical cable linked to a portable FieldSpec UV/VNIR that records the spectral downwelling radiance in underwater environment, allowing us to calculate the shortwave attenuation coefficient in water. Results for three inland water bodies are presented under different atmospheric conditions (sun zenith angle and wind speed) and water composition (chlorophyll a concentration and turbidity). We show that the spectral downwelling zenith radiance profiles under high sun elevations present a positive slope in the upper layers due to relatively high scattering of direct sunlight compared to attenuation. For deeper layers, attenuation overcomes the scattering of sunlight leading to a constant negative logarithmic slope. For low sun elevations, a negative slope is observed in the entire water column since the scattering of direct sunlight is always lower than attenuation. Whenever a negative logarithmic constant slope is observed, the attenuation coefficient was computed. A relation was observed between attenuation coefficient in the photosynthetically active radiation (PAR) spectral region and water turbidity, for the three water bodies under study.

Spectral measurements of underwater downwelling radiance of inland water bodies

Bortoli;Daniele;
2013

Abstract

The apparatus exploited in this work is composed of an optical cable linked to a portable FieldSpec UV/VNIR that records the spectral downwelling radiance in underwater environment, allowing us to calculate the shortwave attenuation coefficient in water. Results for three inland water bodies are presented under different atmospheric conditions (sun zenith angle and wind speed) and water composition (chlorophyll a concentration and turbidity). We show that the spectral downwelling zenith radiance profiles under high sun elevations present a positive slope in the upper layers due to relatively high scattering of direct sunlight compared to attenuation. For deeper layers, attenuation overcomes the scattering of sunlight leading to a constant negative logarithmic slope. For low sun elevations, a negative slope is observed in the entire water column since the scattering of direct sunlight is always lower than attenuation. Whenever a negative logarithmic constant slope is observed, the attenuation coefficient was computed. A relation was observed between attenuation coefficient in the photosynthetically active radiation (PAR) spectral region and water turbidity, for the three water bodies under study.
2013
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
apparatus
spectroradiometer
inland water
underwater radiance profiles
attenuation coefficient
ALQUEVA RESERVOIR
NATURAL-WATERS
VAAL RIVER
LIGHT
SOUTH
MODEL
TEMPERATURE
PARAMETERS
TURBIDITY
PORTUGAL
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/246813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact