The important role played by ground-based microwave weather radars for the monitoring of volcanic ash clouds has been recently demonstrated. The potential of microwaves from satellite passive and ground-based active sensors to estimate near-source volcanic ash cloud parameters has been also proposed, though with little investigation of their synergy and the role of the radar polarimetry. The goal of this work is to show the potentiality and drawbacks of the X-band dual polarization (DPX) radar measurements through the data acquired during the latest Grímsvötn volcanic eruptions that took place in May 2011 in Iceland. The analysis is enriched by the comparison between DPX data and the observations from the satellite Special Sensor Microwave Imager/Sounder (SSMIS) and a C-band single polarization (SPC) radar. SPC, DPX, and SSMIS instruments cover a large range of the microwave spectrum, operating respectively at 5.4, 3.2, and 0.16-1.6 cm wavelengths.

Interpretation of observed microwave signatures from ground dual polarization radar and space multi-frequency radiometer for the 2011 Grímsvötn volcanic eruption

M Montopoli;D Cimini;
2014

Abstract

The important role played by ground-based microwave weather radars for the monitoring of volcanic ash clouds has been recently demonstrated. The potential of microwaves from satellite passive and ground-based active sensors to estimate near-source volcanic ash cloud parameters has been also proposed, though with little investigation of their synergy and the role of the radar polarimetry. The goal of this work is to show the potentiality and drawbacks of the X-band dual polarization (DPX) radar measurements through the data acquired during the latest Grímsvötn volcanic eruptions that took place in May 2011 in Iceland. The analysis is enriched by the comparison between DPX data and the observations from the satellite Special Sensor Microwave Imager/Sounder (SSMIS) and a C-band single polarization (SPC) radar. SPC, DPX, and SSMIS instruments cover a large range of the microwave spectrum, operating respectively at 5.4, 3.2, and 0.16-1.6 cm wavelengths.
2014
Istituto di Metodologie per l'Analisi Ambientale - IMAA
WEATHER RADAR
ASH CLOUDS
X-BAND
RETRIEVAL
IMAGER.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/246922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact