The performance of Hall effect current transducers (HECTs), under distorted waveform conditions, is usually characterized by means of a frequency response test. In this paper, it was investigated if frequency response is able to correctly evaluate the ratio and the phase errors under distorted conditions. Two HECTs, with the accuracy class level of 1% and 0.5%, respectively, were experimentally characterized under two conditions: 1) sinusoidal excitation with frequencies ranging from 50 to 750 Hz, which is the well-known frequency response test, and 2) nonsinusoidal excitation using fundamental frequency and one harmonic with adjusted amplitude and phase shift. It was found that ratio and phase errors are weakly affected by the harmonic amplitude and phase shift, with respect to the fundamental in the accuracy level of 0.1% and 0.05°. They have, instead, a strong dependence from conductor location in the HECT window. These results suggest that the frequency response approach for the evaluation of HECT performance, under distorted waveform conditions, can be used for an error compensation method only if the position of the primary conductor is known. An error compensation method, based on the frequency response, was implemented and tested with a distorted waveform composed of fundamental and many harmonics. For each of the harmonic components, the errors were reduced to one tenth of the measured ones. © 2006 IEEE.

Improvement of Hall effect current transducer metrological performances in the presence of harmonic distortion

D Di Cara;
2010

Abstract

The performance of Hall effect current transducers (HECTs), under distorted waveform conditions, is usually characterized by means of a frequency response test. In this paper, it was investigated if frequency response is able to correctly evaluate the ratio and the phase errors under distorted conditions. Two HECTs, with the accuracy class level of 1% and 0.5%, respectively, were experimentally characterized under two conditions: 1) sinusoidal excitation with frequencies ranging from 50 to 750 Hz, which is the well-known frequency response test, and 2) nonsinusoidal excitation using fundamental frequency and one harmonic with adjusted amplitude and phase shift. It was found that ratio and phase errors are weakly affected by the harmonic amplitude and phase shift, with respect to the fundamental in the accuracy level of 0.1% and 0.05°. They have, instead, a strong dependence from conductor location in the HECT window. These results suggest that the frequency response approach for the evaluation of HECT performance, under distorted waveform conditions, can be used for an error compensation method only if the position of the primary conductor is known. An error compensation method, based on the frequency response, was implemented and tested with a distorted waveform composed of fundamental and many harmonics. For each of the harmonic components, the errors were reduced to one tenth of the measured ones. © 2006 IEEE.
2010
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
Accuracy class
Accuracy level
Current measurements
Current transducer
Distorted waveforms
Frequency response tests
Fundamental frequencies
Harmonic amplitude
Harmonic components
Metrological performance
Non-sinusoidal excitation
Phase error
Sinusoidal excitations
Electric current measurement
Electric currents
Electric power distribution
Error compensation
Gyrators
Hall effect
Hall effect devices
Harmonic analysis
Harmonic distortion
Light measurement
Magnetic field effects
Phase shift
Transducers
Frequency response
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact