The electronic character of a p-conjugated molecular overlayer on a metal surface can change from semiconducting to metallic, depending on how molecular orbitals arrange with respect to the electrodes Fermi level. Molecular level alignment is thus a key property that strongly influences the performance of organic-based devices. In this work, we report how the electronic level alignment of copper phthalocyanines on metal surfaces can be tailored by controlling the substrate work function. We even show the way to finely tune it for one fixed phthalocyaninemetal combination without the need to intercalate substrate-functionalizing buffer layers. Instead, the work function is trimmed by appropriate design of the phthalocyanines supramolecular environment, such that charge transfer into empty molecular levels can be triggered across the metalorganic interface. These intriguing observations are the outcome of a powerful combination of surface-sensitive electron spectroscopies, which further reveal a number of characteristic spectroscopic fingerprints of a lifted LUMO degeneracy associated with the partial phthalocyanine charging.

Spectroscopic Fingerprints of Work-Function-Controlled Phthalocyanine Charging on Metal Surfaces

Floreano Luca;
2014

Abstract

The electronic character of a p-conjugated molecular overlayer on a metal surface can change from semiconducting to metallic, depending on how molecular orbitals arrange with respect to the electrodes Fermi level. Molecular level alignment is thus a key property that strongly influences the performance of organic-based devices. In this work, we report how the electronic level alignment of copper phthalocyanines on metal surfaces can be tailored by controlling the substrate work function. We even show the way to finely tune it for one fixed phthalocyaninemetal combination without the need to intercalate substrate-functionalizing buffer layers. Instead, the work function is trimmed by appropriate design of the phthalocyanines supramolecular environment, such that charge transfer into empty molecular levels can be triggered across the metalorganic interface. These intriguing observations are the outcome of a powerful combination of surface-sensitive electron spectroscopies, which further reveal a number of characteristic spectroscopic fingerprints of a lifted LUMO degeneracy associated with the partial phthalocyanine charging.
2014
Istituto Officina dei Materiali - IOM -
metal-organic interfaces
energy-level alignment
molecular blends
photoemission
NEXAFS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 38
social impact