We present a method for optimization of optical coherence tomography images using wavefront sensorless adaptive optics. The method consists of systematic adjustment of the coefficients of a subset of the orthogonal Zernike bases and application of the resulting shapes to a deformable mirror, while optimizing using image sharpness as a merit function. We demonstrate that this technique can compensate for aberrations induced by trial lenses. Measurements of the point spread function before and after compensation demonstrate near diffraction limit imaging. © 2013 Optical Society of America.

Wavefront sensorless modal deformable mirror correction in adaptive optics: Optical coherence tomography

Bonora Stefano;
2013

Abstract

We present a method for optimization of optical coherence tomography images using wavefront sensorless adaptive optics. The method consists of systematic adjustment of the coefficients of a subset of the orthogonal Zernike bases and application of the resulting shapes to a deformable mirror, while optimizing using image sharpness as a merit function. We demonstrate that this technique can compensate for aberrations induced by trial lenses. Measurements of the point spread function before and after compensation demonstrate near diffraction limit imaging. © 2013 Optical Society of America.
2013
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? ND
social impact