We investigate the zero-temperature properties of a diluted homogeneous Bose gas made of N particles interacting via a two-body square-well potential by performing Monte Carlo simulations. We tune the interaction strength to achieve arbitrary positive values of the scattering length and compute by Monte Carlo quadrature the energy per particle E/N and the condensate fraction N-0/N of this system by using a Jastrow ansatz for the many-body wave function, which avoids the formation of the self-bound ground state and describes instead a (metastable) gaseous state with uniform density. In the unitarity limit, where the scattering length diverges while the range of the interatomic potential is much smaller than the average distance between atoms, we find a finite energy per particle [E/N=0.70 [sic](2)(6 pi(2)n)(2/3)/2m, with n the number density] and a quite large condensate fraction (N-0/N=0.83).

Monte Carlo simulations of the unitary Bose gas

Toigo Flavio
2014

Abstract

We investigate the zero-temperature properties of a diluted homogeneous Bose gas made of N particles interacting via a two-body square-well potential by performing Monte Carlo simulations. We tune the interaction strength to achieve arbitrary positive values of the scattering length and compute by Monte Carlo quadrature the energy per particle E/N and the condensate fraction N-0/N of this system by using a Jastrow ansatz for the many-body wave function, which avoids the formation of the self-bound ground state and describes instead a (metastable) gaseous state with uniform density. In the unitarity limit, where the scattering length diverges while the range of the interatomic potential is much smaller than the average distance between atoms, we find a finite energy per particle [E/N=0.70 [sic](2)(6 pi(2)n)(2/3)/2m, with n the number density] and a quite large condensate fraction (N-0/N=0.83).
2014
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 31
social impact