Heating by gas combustion is widespread in residential and industrial environments, through the use of different types of systems and plants. A relevant case is that of gas stoves, where the heat-radiating unit operates autonomously with local gas feeding. A thermoelectric generator (TEG) can be integrated within this type of autonomous gas heater, for local production of electric power, so that devices requiring electric power can be added, where desired, without the need for any connection to the electrical grid. This approach can also lead to easier installation and operation, and eventually increases the overall efficiency. Following the development plan presented in a previous report, a new prototype of an autonomous gas heater for outdoor use has been implemented through the integration of an improved TEG device with a simple and robust design, which can be easily operated by the end-user. A small amount of heat is withdrawn and converted into electricity by the TEG, providing self-sustaining operation and, moreover, powering additional functions such as high-efficiency light-emitting diode lighting.

Update on the Design and Development of a TEG Cogenerator Device Integrated into Self-Standing Gas Heaters

Codecasa MP;Fanciulli C;Passaretti F
2013

Abstract

Heating by gas combustion is widespread in residential and industrial environments, through the use of different types of systems and plants. A relevant case is that of gas stoves, where the heat-radiating unit operates autonomously with local gas feeding. A thermoelectric generator (TEG) can be integrated within this type of autonomous gas heater, for local production of electric power, so that devices requiring electric power can be added, where desired, without the need for any connection to the electrical grid. This approach can also lead to easier installation and operation, and eventually increases the overall efficiency. Following the development plan presented in a previous report, a new prototype of an autonomous gas heater for outdoor use has been implemented through the integration of an improved TEG device with a simple and robust design, which can be easily operated by the end-user. A small amount of heat is withdrawn and converted into electricity by the TEG, providing self-sustaining operation and, moreover, powering additional functions such as high-efficiency light-emitting diode lighting.
2013
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
thermoelectric converter
thermoelectric generator
TEG
gas heater
gas stove
off-grid operation
cogeneration
waste heat recovery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact