We report about the main dynamical features of a model of leaky integrate-and-fire excitatory neurons with short-term plasticity defined on random massive networks. We investigate the dynamics by use of a heterogeneous mean-field formulation of the model that is able to reproduce dynamical phases characterized by the presence of quasisynchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks with a sufficiently large average in-degree.
Heterogeneous mean field for neural networks with short-term plasticity
Roberto Livi;Alessandro Vezzani
2014
Abstract
We report about the main dynamical features of a model of leaky integrate-and-fire excitatory neurons with short-term plasticity defined on random massive networks. We investigate the dynamics by use of a heterogeneous mean-field formulation of the model that is able to reproduce dynamical phases characterized by the presence of quasisynchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks with a sufficiently large average in-degree.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_284263-doc_109212.pdf
solo utenti autorizzati
Descrizione: Heterogeneous mean field for neural networks with short-term plasticity
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


