We dope graphene by evaporation of MoO3 or by solution-deposition of I2 and assess the doping stability for its use as transparent electrodes. Electrical measurements show that both dopants increase the graphene sheet conductivity and find that MoO3-doped graphene is significantly more stable during thermal cycling. Raman spectroscopy finds that neither dopant creates defects in the graphene lattice. In-situ photoemission determines the minimum necessary thickness of MoO3 for full graphene doping.
Stability of graphene doping with MoO3 and I2
Cepek Cinzia;
2014
Abstract
We dope graphene by evaporation of MoO3 or by solution-deposition of I2 and assess the doping stability for its use as transparent electrodes. Electrical measurements show that both dopants increase the graphene sheet conductivity and find that MoO3-doped graphene is significantly more stable during thermal cycling. Raman spectroscopy finds that neither dopant creates defects in the graphene lattice. In-situ photoemission determines the minimum necessary thickness of MoO3 for full graphene doping.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.