In this paper, we propose a practical way to stabilize half-hydrogenated graphene (graphone). We show that the dipole moments induced by a hexagonal-boron nitride (h-BN) substrate on graphene stabilize the hydrogen atoms on one sublattice of the graphene layer and suppress the migration of the adsorbed hydrogen atoms. Based upon first principle spin polarized density of states calculations, we show that the graphone obtained in different graphene/h-BN heterostructures exhibits a half metallic state. We propose to use this exotic material for spin valve systems and other spintronics devices. © 2014 American Physical Society.

Stable path to ferromagnetic hydrogenated graphene growth

Polini M;
2014

Abstract

In this paper, we propose a practical way to stabilize half-hydrogenated graphene (graphone). We show that the dipole moments induced by a hexagonal-boron nitride (h-BN) substrate on graphene stabilize the hydrogen atoms on one sublattice of the graphene layer and suppress the migration of the adsorbed hydrogen atoms. Based upon first principle spin polarized density of states calculations, we show that the graphone obtained in different graphene/h-BN heterostructures exhibits a half metallic state. We propose to use this exotic material for spin valve systems and other spintronics devices. © 2014 American Physical Society.
2014
Istituto Nanoscienze - NANO
HEXAGONAL BORON-NITRIDE; GRAPHONE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact