AIMS/HYPOTHESIS: The role of the intestine in the pathogenesis of metabolic diseases is gaining much attention. We therefore sought to validate, using an animal model, the use of positron emission tomography (PET) in the estimation of intestinal glucose uptake (GU), and thereafter to test whether intestinal insulin-stimulated GU is altered in morbidly obese compared with healthy human participants. METHODS: In the validation study, pigs were imaged using [(18)F]fluorodeoxyglucose ([(18)F]FDG) and the image-derived data were compared with corresponding ex vivo measurements in tissue samples and with arterial-venous differences in glucose and [(18)F]FDG levels. In the clinical study, GU was measured in different regions of the intestine in lean (n = 8) and morbidly obese (n = 8) humans at baseline and during euglycaemic hyperinsulinaemia. RESULTS: PET- and ex vivo-derived intestinal values were strongly correlated and most of the fluorine-18-derived radioactivity was accumulated in the mucosal layer of the gut wall. In the gut wall of pigs, insulin promoted GU as determined by PET, the arterial-venous balance or autoradiography. In lean human participants, insulin increased GU from the circulation in the duodenum (from 1.3 ± 0.6 to 3.1 ± 1.1 ?mol [100 g](-1) min(-1), p < 0.05) and in the jejunum (from 1.1 ± 0.7 to 3.0 ± 1.5 ?mol [100 g](-1) min(-1), p < 0.05). Obese participants failed to show any increase in insulin-stimulated GU compared with fasting values (NS). CONCLUSIONS/INTERPRETATION: Intestinal GU can be quantified in vivo by [(18)F]FDG PET. Intestinal insulin resistance occurs in obesity before the deterioration of systemic glucose tolerance.

Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity.

Gastaldelli A;Iozzo P;
2013

Abstract

AIMS/HYPOTHESIS: The role of the intestine in the pathogenesis of metabolic diseases is gaining much attention. We therefore sought to validate, using an animal model, the use of positron emission tomography (PET) in the estimation of intestinal glucose uptake (GU), and thereafter to test whether intestinal insulin-stimulated GU is altered in morbidly obese compared with healthy human participants. METHODS: In the validation study, pigs were imaged using [(18)F]fluorodeoxyglucose ([(18)F]FDG) and the image-derived data were compared with corresponding ex vivo measurements in tissue samples and with arterial-venous differences in glucose and [(18)F]FDG levels. In the clinical study, GU was measured in different regions of the intestine in lean (n = 8) and morbidly obese (n = 8) humans at baseline and during euglycaemic hyperinsulinaemia. RESULTS: PET- and ex vivo-derived intestinal values were strongly correlated and most of the fluorine-18-derived radioactivity was accumulated in the mucosal layer of the gut wall. In the gut wall of pigs, insulin promoted GU as determined by PET, the arterial-venous balance or autoradiography. In lean human participants, insulin increased GU from the circulation in the duodenum (from 1.3 ± 0.6 to 3.1 ± 1.1 ?mol [100 g](-1) min(-1), p < 0.05) and in the jejunum (from 1.1 ± 0.7 to 3.0 ± 1.5 ?mol [100 g](-1) min(-1), p < 0.05). Obese participants failed to show any increase in insulin-stimulated GU compared with fasting values (NS). CONCLUSIONS/INTERPRETATION: Intestinal GU can be quantified in vivo by [(18)F]FDG PET. Intestinal insulin resistance occurs in obesity before the deterioration of systemic glucose tolerance.
2013
Istituto di Fisiologia Clinica - IFC
RAT SMALL-INTESTINE
GLUCOSE-METABOLISM
ADIPOSE-TISSUE
BRAIN
GUT
GLUCOSE-6-PHOSPHATASE
MICRODIALYSIS
PERFORMANCE
TRANSPORT
MUSCLE
File in questo prodotto:
File Dimensione Formato  
prod_273941-doc_76585.pdf

non disponibili

Descrizione: Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs
Tipologia: Versione Editoriale (PDF)
Dimensione 440.15 kB
Formato Adobe PDF
440.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/247910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact