Truncation at N-terminal domain of tau protein is early associated with neurofibrillary pathology in several human tauopathies, including Alzheimer's disease (AD). In affected subjects, the monitoring of total (t-tau) and/or phosphorylated tau (p-tau) levels in cerebrospinal fluid (CSF) provides a reliable, indirect evaluation of cellular changes occurring in vivo and the identification of additional CSF biomarkers would better assist with the clinical practice, allowing a broader profile of underlying ongoing neurodegeneration. Here we show that a 20-22 kDa NH2-truncated form of human tau (i.e., NH2htau), a neurotoxic fragment of the full length protein (htau40) that we previously found in synapses from subjects affected by different tauopathies: (i) is not a normal constituent of CSF, unlike t-tau and p-tau, being exceptionally detected in patients without cognitive impairment; (ii) discriminates, with a weak specificity of 65% but a high sensitivity of 85%, patients carrying a large spectrum of neurodegenerative diseases associated with cognitive deterioration (i.e., AD, frontotemporal lobar degeneration, Parkinson's disease with dementia, vascular dementia, mixed dementia, etc.) from subjects affected by other neurological disorders without mnesic disability; and (iii) is a neuronal injury biomarker as its levels in CSF are not related to the severity and progression of cognitive decline. The dynamic evaluation of NH2htau in CSF might add some useful hints in the ordinary clinical practice as it provides a novel, general biomarker for human tauopathies and other neurodegenerative diseases associated with dementia.
Cerebrospinal Fluid Levels of a 20-22 kDa NH2 Fragment of Human Tau Provide a Novel Neuronal Injury Biomarker in Alzheimer's Disease and Other Dementias.
Amadoro Giuseppina;
2014
Abstract
Truncation at N-terminal domain of tau protein is early associated with neurofibrillary pathology in several human tauopathies, including Alzheimer's disease (AD). In affected subjects, the monitoring of total (t-tau) and/or phosphorylated tau (p-tau) levels in cerebrospinal fluid (CSF) provides a reliable, indirect evaluation of cellular changes occurring in vivo and the identification of additional CSF biomarkers would better assist with the clinical practice, allowing a broader profile of underlying ongoing neurodegeneration. Here we show that a 20-22 kDa NH2-truncated form of human tau (i.e., NH2htau), a neurotoxic fragment of the full length protein (htau40) that we previously found in synapses from subjects affected by different tauopathies: (i) is not a normal constituent of CSF, unlike t-tau and p-tau, being exceptionally detected in patients without cognitive impairment; (ii) discriminates, with a weak specificity of 65% but a high sensitivity of 85%, patients carrying a large spectrum of neurodegenerative diseases associated with cognitive deterioration (i.e., AD, frontotemporal lobar degeneration, Parkinson's disease with dementia, vascular dementia, mixed dementia, etc.) from subjects affected by other neurological disorders without mnesic disability; and (iii) is a neuronal injury biomarker as its levels in CSF are not related to the severity and progression of cognitive decline. The dynamic evaluation of NH2htau in CSF might add some useful hints in the ordinary clinical practice as it provides a novel, general biomarker for human tauopathies and other neurodegenerative diseases associated with dementia.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.