The goal of active vaccination is to induce all the immune effector pathways and to establish immunological memory allowing prolonged surveillance against pathogens or cancer cells. DNA vaccination platform is an intriguing strategy owing to its ability to mobilize both branches of the immune system (i.e., innate immunity as well as adaptive immunity). Since plasmids offer several advantages for biotechnological applications due to their modular structure and easy manipulation, a wide range of strategies can be applied to improve DNA vaccine performance. This chapter discusses this topic in detail taking into account antigen/epitope selection and optimization, inclusion of intracellular targeting sequences and genetic adjuvants, and provision of T cell help.
Strategies for improving DNA vaccine performance.
Iurescia Sandra;Fioretti Daniela;Rinaldi Monica
2014
Abstract
The goal of active vaccination is to induce all the immune effector pathways and to establish immunological memory allowing prolonged surveillance against pathogens or cancer cells. DNA vaccination platform is an intriguing strategy owing to its ability to mobilize both branches of the immune system (i.e., innate immunity as well as adaptive immunity). Since plasmids offer several advantages for biotechnological applications due to their modular structure and easy manipulation, a wide range of strategies can be applied to improve DNA vaccine performance. This chapter discusses this topic in detail taking into account antigen/epitope selection and optimization, inclusion of intracellular targeting sequences and genetic adjuvants, and provision of T cell help.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.