The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported.

An image filtering technique for SPIDER visible tomography

Agostini M;Brombin M;Pasqualotto R;Serianni G
2014

Abstract

The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported.
2014
Istituto gas ionizzati - IGI - Sede Padova
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/248480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact