Nanoscale structures have been recently proposed as charge storage nodes due to their potential applications for future nanoscale memory devices. Our approach is based on the idea of using Si nanodots as discrete floating gates. To experimentally investigate such potential, we have fabricated MOS structures with Si nanocrystals. The dots have been deposited onto an ultra-thin tunnel oxide by chemical vapour deposition, and then annealed at 1000 degreesC for 40 s, to crystallize all the dots. After deposition the dots have been covered by a CVD SiO2 layer, thus resulting in dots completely embedded in stoichiometric silicon oxide. The nanocrystal density and size have been studied by energy filtered TEM (EFTEM) analysis. An electrostatic force microscope has been used to locally inject the charge. By applying a relatively large tip voltage a few dots have been charged, and the shift in the tip phase has been monitored. The shift in the phase is attributed to the presence of the charge in the sample. A comparison between n and p type samples is also shown.

Charging effects in Si quantum dots for Non Volatile Memories applications monitored by electrostatic force microscopy

Puglisi RA;Nicotra G;Lombardo S;
2004

Abstract

Nanoscale structures have been recently proposed as charge storage nodes due to their potential applications for future nanoscale memory devices. Our approach is based on the idea of using Si nanodots as discrete floating gates. To experimentally investigate such potential, we have fabricated MOS structures with Si nanocrystals. The dots have been deposited onto an ultra-thin tunnel oxide by chemical vapour deposition, and then annealed at 1000 degreesC for 40 s, to crystallize all the dots. After deposition the dots have been covered by a CVD SiO2 layer, thus resulting in dots completely embedded in stoichiometric silicon oxide. The nanocrystal density and size have been studied by energy filtered TEM (EFTEM) analysis. An electrostatic force microscope has been used to locally inject the charge. By applying a relatively large tip voltage a few dots have been charged, and the shift in the tip phase has been monitored. The shift in the phase is attributed to the presence of the charge in the sample. A comparison between n and p type samples is also shown.
2004
1-55899-732-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/248569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact