An innovative hydrophilic and anti-fouling coating material for application in membrane technology for wastewater treatment has been developed by polymerization of a polymerizable bicontinuous microemulsion (PBM) and used for surface modification of a commercial flat polyethersulfone (PES) membrane. The novel nanostructured coating has been produced using acryloyloxyundecyltriethylammonium bromide (AUTEAB) as a co-polymerizable surfactant, obtained through a synthetic method characterized by a lower cost and a higher reproducibility compared to other known polymerizable surfactants. The novel composite membranes have been characterized and compared with the uncoated PES membranes. Coated membranes resulted in a smoother surface and a higher hydrophilicity with respect to the uncoated ones, and showed a particular nano-size channel-like morphology making them highly resistant to the fouling phenomenon. The covalent anchorage of the surfactant on the membrane surface ensured the embedment of the molecule in the polymeric matrix avoiding its leaching and also leading the coated membranes to have significant antimicrobial activity, which is very important for reducing the biofouling phenomenon. All these aspects make the tailored coating material an ideal and efficient coating for modifications of commercial membrane surfaces, to be used in membrane processes in wastewater treatment.

A Step Forward to a More Efficient Wastewater Treatment by Membrane Surface Modification via Polymerizable Bicontinuous Microemulsion

F Galiano;A Figoli;G De Luca;
2015

Abstract

An innovative hydrophilic and anti-fouling coating material for application in membrane technology for wastewater treatment has been developed by polymerization of a polymerizable bicontinuous microemulsion (PBM) and used for surface modification of a commercial flat polyethersulfone (PES) membrane. The novel nanostructured coating has been produced using acryloyloxyundecyltriethylammonium bromide (AUTEAB) as a co-polymerizable surfactant, obtained through a synthetic method characterized by a lower cost and a higher reproducibility compared to other known polymerizable surfactants. The novel composite membranes have been characterized and compared with the uncoated PES membranes. Coated membranes resulted in a smoother surface and a higher hydrophilicity with respect to the uncoated ones, and showed a particular nano-size channel-like morphology making them highly resistant to the fouling phenomenon. The covalent anchorage of the surfactant on the membrane surface ensured the embedment of the molecule in the polymeric matrix avoiding its leaching and also leading the coated membranes to have significant antimicrobial activity, which is very important for reducing the biofouling phenomenon. All these aspects make the tailored coating material an ideal and efficient coating for modifications of commercial membrane surfaces, to be used in membrane processes in wastewater treatment.
2015
Istituto per la Tecnologia delle Membrane - ITM
Polymerizable surfactantsPolymerizable bicontinuous microemulsionsSurface modificationWater treatmentMembranes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/248814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact