The concept that the Carnot efficiency places an upper limit of 0.60-0.75 on the thermodynamic efficiency of photosynthetic primary photochemistry is examined using the PSI-LHCI preparation. The maximal quantum efficiency was determined approximate to 0.99 which yielded a thermodynamic efficiency of 0.96, a value far above that predicted on the basis of the Carnot efficiency. The commonly presented reasoning leading to the Carnot efficiency idea was therefore critically examined. It is concluded that the crucial assumption that the pigment system, under illumination, is in equilibrium with the incident light field, at a black body temperature of T-r, is erroneous, as the temperature of the excited state pigments was experimentally shown to be that of the sample solvent (thermal bath), 280 K in this case. It is concluded that the classical reasoning used to describe the thermodynamics of heat systems is not applicable to "photonic" systems such as plant photosystems.

The Carnot Efficiency and Plant Photosystems

Santabarbara S;Zucchelli G
2014

Abstract

The concept that the Carnot efficiency places an upper limit of 0.60-0.75 on the thermodynamic efficiency of photosynthetic primary photochemistry is examined using the PSI-LHCI preparation. The maximal quantum efficiency was determined approximate to 0.99 which yielded a thermodynamic efficiency of 0.96, a value far above that predicted on the basis of the Carnot efficiency. The commonly presented reasoning leading to the Carnot efficiency idea was therefore critically examined. It is concluded that the crucial assumption that the pigment system, under illumination, is in equilibrium with the incident light field, at a black body temperature of T-r, is erroneous, as the temperature of the excited state pigments was experimentally shown to be that of the sample solvent (thermal bath), 280 K in this case. It is concluded that the classical reasoning used to describe the thermodynamics of heat systems is not applicable to "photonic" systems such as plant photosystems.
2014
Istituto di Biofisica - IBF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/248848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact