The clinical relevance of the urokinase receptor (uPAR) as a prognostic marker in ovarian cancer is well documented. We had shown that the uPAR sequence corresponding to 84-95 residues, linking D1 and D2 domains (uPAR(84-95)), drives cell migration and angiogenesis in a protease-independent manner. This study was aimed at defining the contribution of uPAR(84-95) sequence to invasion of ovarian cancer cells. Now, we provide evidence that the ability of uPAR-expressing ovarian cancer cells to cross extra-cellular matrix and mesothelial monolayers is prevented by specific inhibitors of the uPAR(84-95) sequence. To specifically investigate uPAR(84-95) function, uPAR-negative CHO-K1 cells were stably transfected with cDNAs coding for uPAR D2 and D3 regions exposing (uPARD2D3) or lacking (uPAR Delta D2D3) the 84-95 sequence. CHO-K1/D2D3 cells were able to cross matrigel, mesothelial and endothelial monolayers more efficiently than CHO-K1/Delta D2D3 cells, which behave as CHO-K1 control cells. When orthotopically implanted in nude mice, tumor nodules generated by CHO-K1/D2D3 cells spreading to peritoneal cavity were more numerous as compared to CHO-K1/Delta D2D3 cells. Ovarian tumor size and intra-tumoral microvessel density were significantly reduced in the absence of uPAR(84-95). Our results indicate that cell associated uPAR promotes growth and abdominal dissemination of ovarian cancer cells mainly through its uPAR84-95 sequence.

Urokinase receptor promotes ovarian cancer cell dissemination through its 84-95 sequence

2014

Abstract

The clinical relevance of the urokinase receptor (uPAR) as a prognostic marker in ovarian cancer is well documented. We had shown that the uPAR sequence corresponding to 84-95 residues, linking D1 and D2 domains (uPAR(84-95)), drives cell migration and angiogenesis in a protease-independent manner. This study was aimed at defining the contribution of uPAR(84-95) sequence to invasion of ovarian cancer cells. Now, we provide evidence that the ability of uPAR-expressing ovarian cancer cells to cross extra-cellular matrix and mesothelial monolayers is prevented by specific inhibitors of the uPAR(84-95) sequence. To specifically investigate uPAR(84-95) function, uPAR-negative CHO-K1 cells were stably transfected with cDNAs coding for uPAR D2 and D3 regions exposing (uPARD2D3) or lacking (uPAR Delta D2D3) the 84-95 sequence. CHO-K1/D2D3 cells were able to cross matrigel, mesothelial and endothelial monolayers more efficiently than CHO-K1/Delta D2D3 cells, which behave as CHO-K1 control cells. When orthotopically implanted in nude mice, tumor nodules generated by CHO-K1/D2D3 cells spreading to peritoneal cavity were more numerous as compared to CHO-K1/Delta D2D3 cells. Ovarian tumor size and intra-tumoral microvessel density were significantly reduced in the absence of uPAR(84-95). Our results indicate that cell associated uPAR promotes growth and abdominal dissemination of ovarian cancer cells mainly through its uPAR84-95 sequence.
2014
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
Urokinase Receptor
Ovarian cancer
Cell Invasion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/248931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact