Information geometry is a powerful framework in which to study families of probability distributions or statistical models by applying differential geometric tools. It provides a useful framework for deriving many important structures in probability theory by identifying the space of probability distributions with a differentiable manifold endowed with a Riemannian metric. In this paper, we revisit some aspects concerning the kappa -thermostatistics based on the entropy S-kappa in the framework of information geometry. After introducing the dually flat structure associated with the kappa -distribution, we show that the dual potentials derived in the formalism of information geometry correspond to the generalized Massieu function Phi(kappa) and the generalized entropy S-kappa characterizing the Legendre structure of the kappa -deformed statistical mechanics. In addition, we obtain several quantities, such as escort distributions and canonical divergence, relevant for the further development of the theory.
Legendre structure of kappa-thermostatistics revisited in the framework of information geometry
A. M. Scarfone;
2014
Abstract
Information geometry is a powerful framework in which to study families of probability distributions or statistical models by applying differential geometric tools. It provides a useful framework for deriving many important structures in probability theory by identifying the space of probability distributions with a differentiable manifold endowed with a Riemannian metric. In this paper, we revisit some aspects concerning the kappa -thermostatistics based on the entropy S-kappa in the framework of information geometry. After introducing the dually flat structure associated with the kappa -distribution, we show that the dual potentials derived in the formalism of information geometry correspond to the generalized Massieu function Phi(kappa) and the generalized entropy S-kappa characterizing the Legendre structure of the kappa -deformed statistical mechanics. In addition, we obtain several quantities, such as escort distributions and canonical divergence, relevant for the further development of the theory.File | Dimensione | Formato | |
---|---|---|---|
prod_284148-doc_81177.pdf
solo utenti autorizzati
Descrizione: Legendre structure of κ-thermostatistics revisited in the framework of information geometry
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
180.97 kB
Formato
Adobe PDF
|
180.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.