There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the S ? -DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures.

Parallel solutions for voxel-based simulations of reaction-diffusion systems

D D'Agostino;A Clematis;E Mosca;L Milanesi;I Merelli
2014

Abstract

There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the S ? -DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures.
2014
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Istituto di Tecnologie Biomediche - ITB
File in questo prodotto:
File Dimensione Formato  
prod_284150-doc_81179.pdf

solo utenti autorizzati

Descrizione: Parallel solutions for voxel-based simulations of reaction-diffusion systems
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/248989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact