Our previous study of interaction between low intensity radiation at 53.37 GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles was attributed to the action of the field on charged and dipolar residues located at the membrane-water interface. In an attempt to improve the understanding on how millimeter wave radiation (MMW) can induce this movement we report here a real time evaluation of changes induced on the movement of giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Changes of the direction of vesicle movement are demonstrated, which occur only during irradiation with a "switch on" of the effect. This MMW-induced effect was observed at a larger extent on giant vesicles prepared with negatively charged phospholipids. The monitoring of induced-by-irradiation temperature variation and numerical dosimetry indicate that the observed effects in vesicle movement cannot be attributed to local heating.
Induced movements of giant vesicles by millimeter wave radiation
Simone Dinarelli;Stefania Romeo;Emiliano Zampetti;Marco Girasole;Ramundo Orlando Alfonsina
2014
Abstract
Our previous study of interaction between low intensity radiation at 53.37 GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles was attributed to the action of the field on charged and dipolar residues located at the membrane-water interface. In an attempt to improve the understanding on how millimeter wave radiation (MMW) can induce this movement we report here a real time evaluation of changes induced on the movement of giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Changes of the direction of vesicle movement are demonstrated, which occur only during irradiation with a "switch on" of the effect. This MMW-induced effect was observed at a larger extent on giant vesicles prepared with negatively charged phospholipids. The monitoring of induced-by-irradiation temperature variation and numerical dosimetry indicate that the observed effects in vesicle movement cannot be attributed to local heating.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.