The formation energy and stability of radical anions in a series of 12 phenyl- and 2-thienyl-ended linear, symmetric azomethines and azines were investigated by cyclic voltammetry. Replacing 1,4-phenylene with 2,5-thienylene cores and substitution with cyano or methyl moieties have allowed the lowering of lowest unoccupied molecular orbital energy levels even by 1 eV. Methyl capping stabilizes electron carriers (radical anions) toward dimerization, and the mechanism of such radical anion dimerization has been clarified by cyclic voltammetric kinetic analysis. The results have been compared with optical parameters and supported by density functional theory calculations. © 2014 American Chemical Society.
Phenyl- and thienyl-ended symmetric azomethines and azines as model compounds for n-channel organic field-effect transistors: An electrochemical and computational study
Vercelli B;Pasini M;Berlin A;
2014
Abstract
The formation energy and stability of radical anions in a series of 12 phenyl- and 2-thienyl-ended linear, symmetric azomethines and azines were investigated by cyclic voltammetry. Replacing 1,4-phenylene with 2,5-thienylene cores and substitution with cyano or methyl moieties have allowed the lowering of lowest unoccupied molecular orbital energy levels even by 1 eV. Methyl capping stabilizes electron carriers (radical anions) toward dimerization, and the mechanism of such radical anion dimerization has been clarified by cyclic voltammetric kinetic analysis. The results have been compared with optical parameters and supported by density functional theory calculations. © 2014 American Chemical Society.File | Dimensione | Formato | |
---|---|---|---|
prod_280069-doc_79872.pdf
solo utenti autorizzati
Descrizione: Phenyl- and thienyl-ended symmetric azomethines and azines as model compounds for n-channel organic field-effect transistors
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.