The aim of this paper is to propose a compensation strategy that is able to easily identify the model of the In-phase/Quadrature (I/Q) impairments of Radio-Frequency (RF) direct-conversion devices and to efficiently compensate these unwanted effects. In fact, direct-conversion transmitters that integrate analog and digital components introduce a wideband frequency-dependent I/Q mismatch that strongly reduces the upconverter performances. The wider the signal bandwidth or the higher its spectral efficiency, the more severe the I/Q artifacts on the upconverted signal become. The proposed compensation strategy can mitigate these unwanted effects, eliminating I/Q impairments with a very simple hardware architecture. The compensation model adopted here for a generic upconverter device does not assume any hypotheses about signal modulation and system architecture and can be easily adapted to accommodate specific hardware systems or different wireless standards. To show the capabilities of the proposed compensation scheme, an experimental setup has been arranged to emulate system configurations found in direct-conversion RF Integrated Circuits (RFIC) for 3.5/4G applications.

I/Q Compensation of Broadband Direct-Conversion Transmitters

Vittorio Rampa
2014

Abstract

The aim of this paper is to propose a compensation strategy that is able to easily identify the model of the In-phase/Quadrature (I/Q) impairments of Radio-Frequency (RF) direct-conversion devices and to efficiently compensate these unwanted effects. In fact, direct-conversion transmitters that integrate analog and digital components introduce a wideband frequency-dependent I/Q mismatch that strongly reduces the upconverter performances. The wider the signal bandwidth or the higher its spectral efficiency, the more severe the I/Q artifacts on the upconverted signal become. The proposed compensation strategy can mitigate these unwanted effects, eliminating I/Q impairments with a very simple hardware architecture. The compensation model adopted here for a generic upconverter device does not assume any hypotheses about signal modulation and system architecture and can be easily adapted to accommodate specific hardware systems or different wireless standards. To show the capabilities of the proposed compensation scheme, an experimental setup has been arranged to emulate system configurations found in direct-conversion RF Integrated Circuits (RFIC) for 3.5/4G applications.
2014
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
4G
CPRI
DigRF
I/Q imbalance compensation
LTE
WLAN
WiMAX
direct-conversion transceivers
gain imbalance
phase imbalance
quadrature imbalance compensation
virtual instrumentation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/249230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact