The brain can be considered as a thermodynamic machine working out of equilibrium, crossed by a stationary (under normal conditions) flux of energy, that is dissipated through thermal fluctuations. The analogy with a fluid state suggests that long space-time correlations have to be present in such a machine to keep it in working conditions, thus making the brain effectively explore dynamical and statistical regimes characterized by scale-free properties. We argue that such a distinctive feature may emerge from an out-of-equilib-rium thermodynamic approach and also from microscopic models (neural networks) with a suitable combination of phenomenological ingredients.
On brain fluctuations and the challenges ahead
Roberto Livi
2013
Abstract
The brain can be considered as a thermodynamic machine working out of equilibrium, crossed by a stationary (under normal conditions) flux of energy, that is dissipated through thermal fluctuations. The analogy with a fluid state suggests that long space-time correlations have to be present in such a machine to keep it in working conditions, thus making the brain effectively explore dynamical and statistical regimes characterized by scale-free properties. We argue that such a distinctive feature may emerge from an out-of-equilib-rium thermodynamic approach and also from microscopic models (neural networks) with a suitable combination of phenomenological ingredients.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_271781-doc_75706.pdf
solo utenti autorizzati
Descrizione: On brain fluctuations and the challenges ahead
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


