We propose an all-optical scheme to probe the dynamical correlations of a strongly interacting gas of ultracold atoms in an optical lattice potential. The proposed technique is based on a pump-and-probe scheme: a coherent light pulse is initially converted into an atomic coherence and later retrieved after a variable storage time. The efficiency of the proposed method to measure the two-time one-particle Green function of the gas is validated by numerical and analytical calculations of the expected signal for the two cases of a normal Fermi gas and a BCS superfluid state. Protocols to extract the superfluid gap and the full quasiparticle dispersions are discussed.

All-optical pump-and-probe detection of dynamical correlations in a two-imensional Fermi gas

Carusotto I;
2010

Abstract

We propose an all-optical scheme to probe the dynamical correlations of a strongly interacting gas of ultracold atoms in an optical lattice potential. The proposed technique is based on a pump-and-probe scheme: a coherent light pulse is initially converted into an atomic coherence and later retrieved after a variable storage time. The efficiency of the proposed method to measure the two-time one-particle Green function of the gas is validated by numerical and analytical calculations of the expected signal for the two cases of a normal Fermi gas and a BCS superfluid state. Protocols to extract the superfluid gap and the full quasiparticle dispersions are discussed.
2010
Istituto Nazionale di Ottica - INO
light storage
ultracold atoms
strongly correlated
coherence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/24938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact