We present the results of an experimental study of Coherent Population Trapping (CPT) in potassium, obtained by means of modulation of laser light amplitude with kHz frequency. The radiation from an external cavity diode laser, matching the D1 line of K, is modulated by an acousto-optical modulator. In the cell containing buffer gas, the CPT resonance width is reduced more than three orders of magnitude as compared to the cell containing pure potassium vapor. In K this resonance narrowing occurs with high resonance contrast; such behavior is not observed in buffered cells containing Rb or Cs, where the optical pumping to the non-interacting with the light ground level is very effective and depletes the population of the working ground Zeeman sublevels. The narrow CPT resonance of reduced fluorescence transforms to the one of enhanced fluorescence with the cell temperature rising. The transformed resonance exhibits higher contrast and lower width than those of the reduced fluorescence resonance. Hence, beside its scientific importance the resonance sign reversal can be used for the improvement of the CPT resonance parameters.

Coherent population trapping resonances in potassium with amplitude-modulated light

Gozzini Silvia;Marmugi Luca;Lucchesini Alessandro;
2011

Abstract

We present the results of an experimental study of Coherent Population Trapping (CPT) in potassium, obtained by means of modulation of laser light amplitude with kHz frequency. The radiation from an external cavity diode laser, matching the D1 line of K, is modulated by an acousto-optical modulator. In the cell containing buffer gas, the CPT resonance width is reduced more than three orders of magnitude as compared to the cell containing pure potassium vapor. In K this resonance narrowing occurs with high resonance contrast; such behavior is not observed in buffered cells containing Rb or Cs, where the optical pumping to the non-interacting with the light ground level is very effective and depletes the population of the working ground Zeeman sublevels. The narrow CPT resonance of reduced fluorescence transforms to the one of enhanced fluorescence with the cell temperature rising. The transformed resonance exhibits higher contrast and lower width than those of the reduced fluorescence resonance. Hence, beside its scientific importance the resonance sign reversal can be used for the improvement of the CPT resonance parameters.
2011
Istituto Nazionale di Ottica - INO
978-0-8194-8237-2
Coherent population trapping
Electromagnetically induced transparency
Magnetometry
Coherent spectroscopy
Laser
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/24942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact