Sensitized P25 TiO2 was prepared by wet impregnation with a home-prepared perylene dye, i.e., N,N?-bis(2-(1- piperazino)ethyl)-3,4,9,10-perylene-tetracarboxylic acid diimide dichloride (PZPER). Energy levels of PZPER were found to be compatible with those of TiO2 allowing fast electron transfer. The obtained catalyst has been characterized and used in the gas-phase partial oxidation of aliphatic primary and secondary alcohols, i.e., methanol, ethanol, and 2- propanol. The reaction was carried out under cut-off (?> 400 nm) simulated solar radiation in O2 atmosphere. The perylene derivative allowed a good absorbance of visible radiation thanks to its low optical energy gap (2.6 eV) which was evaluated by cyclic voltammetry. The optimal organic sensitizing amount was found to be 5.6 % w/w in terms of yield in carbonyl derivatives. Moreover, no change in reactivity/selectivity was observed after 10-h irradiation thus confirming the catalyst stability. Yields into formaldehyde, acetaldehyde, and acetone were 67, 70, and 96 %, respectively. No significant amounts of organic byproducts were detected but for methanol oxidation, whereas a minor amount of the substrate degraded to CO2.

Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative

Palmisano G;Calogero G;Ciriminna R;Di Marco G;Pagliaro M;
2014

Abstract

Sensitized P25 TiO2 was prepared by wet impregnation with a home-prepared perylene dye, i.e., N,N?-bis(2-(1- piperazino)ethyl)-3,4,9,10-perylene-tetracarboxylic acid diimide dichloride (PZPER). Energy levels of PZPER were found to be compatible with those of TiO2 allowing fast electron transfer. The obtained catalyst has been characterized and used in the gas-phase partial oxidation of aliphatic primary and secondary alcohols, i.e., methanol, ethanol, and 2- propanol. The reaction was carried out under cut-off (?> 400 nm) simulated solar radiation in O2 atmosphere. The perylene derivative allowed a good absorbance of visible radiation thanks to its low optical energy gap (2.6 eV) which was evaluated by cyclic voltammetry. The optimal organic sensitizing amount was found to be 5.6 % w/w in terms of yield in carbonyl derivatives. Moreover, no change in reactivity/selectivity was observed after 10-h irradiation thus confirming the catalyst stability. Yields into formaldehyde, acetaldehyde, and acetone were 67, 70, and 96 %, respectively. No significant amounts of organic byproducts were detected but for methanol oxidation, whereas a minor amount of the substrate degraded to CO2.
2014
Istituto per i Processi Chimico-Fisici - IPCF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Perylene-sensitized TiO2
Visible light photocatalysis
Aliphatic alcohol oxidation
File in questo prodotto:
File Dimensione Formato  
prod_280190-doc_80993.pdf

solo utenti autorizzati

Descrizione: Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative
Dimensione 648.94 kB
Formato Adobe PDF
648.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/249846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact